		^	8								
R	oll No _			(To be filled in by	the candidate)						
		•	Sessions 2018 – 2020	· ·							
	MATHEMATICS 222-(INTER PART – II) Time Allowed: 30 Minu Q.PAPER – II (Objective Type) GROUP – I Maximum Marks: 20										
	PAPER CODE = 8193										
N	Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.										
	1-1	(0,0) is the solution	n of inequality:								
		(A) 3x - 7y < 3	(B) x+y>2	(C) $x-y>1$	(D) $3x + 5y > 7$						
	2	The slope of a line w	ith inclination 90°'is	:							
		(A) 0	(B) -1	(C) Undefined	(D) 1						
	3	If \underline{a} and \underline{b} are para	allel vectors then $\underline{a} \times$	$\underline{b} = :$	`						
		(A) <u>0</u>	(B) -1	(C) 1	(D) 2						
	4	Two lines $\frac{a_1x + b_1y + c_1 = 0}{a_2x + b_2y + c_2 = 0}$ are parallel if:									
		$(A) \frac{a_1}{a_2} = \frac{b_1}{b_2}$	(B) $\frac{a_1}{a_2} = -\frac{b_1}{b_2}$	(C) $\frac{b_1}{c_1} = \frac{b_2}{c_2}$	(D) $\frac{a_1}{c_1} = \frac{a_2}{c_2}$						
	5	The value of $3\underline{j}.\underline{k}\times\underline{i}$ is :									
		(A) -1	(B) -3	(C) 3	(D) 0						
	6	If a straight line is pa	$\frac{\text{(B)} - 3}{\text{arallel to x-axis, then i}}$	ts slope is:							
		(A) Undefined	(B) -1	(C) 1	(D) 0						
	7	The centre of the circle $5x^2 + 5y^2 + 24x + 36y + 10 = 0$ is :									
		$(A) \left(\frac{12}{5}, \frac{18}{5}\right)$	(B) $\left(-\frac{12}{5}, -\frac{18}{5}\right)$	(C) $\left(\frac{12}{5}, -\frac{18}{5}\right)$	$(D) \left(-\frac{12}{5}, \frac{18}{5}\right)$						
	8	The length of the latus rectum of the parabola $y^2 = 8x$ is:									
		(A) 2	(B) 8	(C) 4	(D) $2\sqrt{8}$						
	9	The point of intersec	tion of angle bisectors	s of a triangle is ca	lled:						
		(A) Orthocentre	(B) Centroid	(C) In-centre	(D) Circumcentre						

(Turn Over)

(2) Lyp C. 1-22

		(2)	4R-G1-22							
10	The coordinates of the	vertices of hyperbo	$\frac{y^2}{16} - \frac{x^2}{49} = 1$ are :	:						
	(A) • $(0,\pm 7)$	(B) $(\pm 4,0)$	(C) $(0,\pm 4)$	(D) $(\pm 7,0)$						
11	$\frac{d}{dx}(\sin 2x + \cos 2x) = :$,						
	(A) $(\cos 2x - \sin 2x)$	(B) $(\cos 2x)$	$+\sin 2x$)							
	(C) $(2\cos 2x + 2\sin 2x)$ (D) $2(\cos 2x - \sin 2x)$									
12	$\lim_{h\to 0} (1+2h)^{\frac{1}{h}} = :$									
	(A) e^2	(B) <i>e</i>	(C) $\frac{1}{e}$	(D) $\frac{1}{e^2}$						
13	$\int e^{\sin x} \cos x dx = :$									
	(A) $e^{\cos x} + c$	(B) $\ln \sin x + c$	(C) $\ln \cos x + c$	(D) $e^{\sin x} + c$						
14	$\frac{d}{dx}(\cot^{-1}x) = :$,							
	(A) $\frac{1}{1+x^2}$	(B) $\frac{1}{1-x^2}$	(C) $-\frac{1}{1+x^2}$	(D) $-\frac{1}{1-x^2}$						
15	$\int e^x(\cos x + \sin x) dx = 0$									
	$(A) e^{-x} \sin x + c$	(B) $e^x \sin x + c$	(C) $-e^x \sin x + c$	(D) $e^{-x}\cos x + c$						
16	If $y = e^{-ax}$ then $\frac{dy}{dx} = 3$									
	(A) ae^{-ax}	(B) e^{-ax}	(C) a^2e^{-ax}	(D) $-ae^{-ax}$						
17	$\int \frac{1}{1+x^2} dx =:$	•								
	(A) $\tan^{-1} x + c$	(B) $-\tan^{-1}x + c$	(C) $\sin^{-1} x + c$	(D) $\cos^{-1} x + c$						
18	The range of $f(x) = \sqrt{x}$		-							
	(A) (-∞,0]	(B) $[0,+\infty)$	(C) $(0,+\infty)$	(D) $(-\infty,\infty)$						
19	$\int \sin x \cos x dx = :$									
	(A) $\ell n \sin x + c$	(B) $\frac{\cos^2 x}{2} + c$	$(C) \frac{\sin^2 x}{2} + c$	$(D) \frac{\sin^2 x \cos^2 x}{2} + c$						
20	$\frac{d}{dx}\left(\frac{1}{\cos ecx}\right) = :$									
	$(A) \frac{1}{\sec x}$	(B) $\cos ec^2x$	(C) cot x	(D) $\frac{1}{\cos ec^2x}$						

173-222-I-(Objective Type)- 7000 (8193)

Roll No (To be filled in by the candidate) (Academic Sessions 2018 – 2020 to 2020 – 2022) **MATHEMATICS** 222-(INTER PART - II) Time Allowed: 2.30 hours PAPER – II (Essay Type) GROUP - II Maximum Marks: 80 SECTION - I L4R-92-22 2. Write short answers to any EIGHT (8) questions: 16 (i) Find domain and range of $f(x) = \sqrt{x+1}$ (ii) Find $f \circ f(x)$ if $f(x) = \sqrt{x+1}$ (iii) Obtain $f^{-1}(x)$ from $f(x) = 3x^3 + 7$ (iv) Evaluate $\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta}$ (v) Express $\lim_{x \to +\infty} \left(\frac{x}{1+x} \right)^x$ in terms of "e" (vi) If $y = \frac{x^2 + 1}{x^2 - 3}$, then find $\frac{dy}{dx}$ (vii) Prove that derivative of $\tan^{-1} x$ w.r.t. "x" is $\frac{1}{1+x^2}$ (viii) Differentiate $\frac{1}{a}\sin^{-1}(\frac{a}{x})$ w.r.t. "x" (ix) Find $\frac{dy}{dx}$ if $y = x^2 \ell n \sqrt{x}$ (x) If $y = e^{-x}(x^3 + 2x^2 + 1)$, then find $\frac{dy}{dx}$ (xi) Apply the Maclaurin's series expansion to prove that $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$ (xii) Determine the interval in which $f(x) = \sin x$, $x \in (-\pi, \pi)$ is decreasing. 3. Write short answers to any EIGHT (8) questions: 16 (i) If $x^2 + 2y^2 = 16$, find $\frac{dy}{dx}$ by using differentials. (ii) Evaluate $\int \frac{x}{x+2} dx$ (iii) Evaluate indefinite integral $\int \frac{\sec^2 x}{\sqrt{\tan x}} dx$ (iv) Evaluate $\int \ln x \, dx$ (v) Evaluate the definite integral $\int (x^{\frac{1}{3}} + 1) dx$ (vi) Find the area between the x-axis and the curve $y = x^2 + 1$ from x = 1 to x = 2(vii) Evaluate $\int e^{-x} (\cos x - \sin x) dx$ (viii) Solve x dy + y(x-1) dx = 0(ix) Show that the points A (3,1), B (-2,-3) and C (2,2) are vertices of an

isosceles triangle

•	(··)	(2) LHR G2-22 Find an advertion of line having wintercont to 0 and along to 4	0
3.	(x)	Find an equation of line having x-intercept: -9 and slope: -4	
	(xi)		
		What is homogeneous equation?	
4.		short answers to any NINE (9) questions:	18
	(i)	Graph the solution set of $2x+1 \ge 0$	
	(ii)	Define problem constraint.	
	(iii)	Find an equation of circle with centre ($\sqrt{2}$, $-3\sqrt{3}$) and radius $2\sqrt{2}$	
	(iv)	Find slope of tangent to $x^2 + y^2 = 5$ at (4,3)	
	(v)	Check the position of the point (5, 6) with respect to the circle $x^2 + y^2 = 81$	
	(vi)	Find focus and vertex of $y^2 = 8x$	
	(vii)	Find equation of ellipse with foci $(\pm 3, 0)$ and minor axis of length 10.	
	(viii)	Find equation of hyperbola with centre (0,0), focus (6,0), vertex (4,0) Find a vector from the point A to the origin where $\overrightarrow{AB} = 4\underline{i} - 2\underline{j}$ and B (-2,5)	
	(ix)		
	(x)	<u> </u>	
	(xi)	Find the cosine of the angle θ between \underline{u} and \underline{v} ; $\underline{u} = \underline{i} - 3\underline{j} + 4\underline{k}$; $\underline{v} = 4\underline{i} - \underline{j} + 3\underline{k}$	
	(xii)	_ (= =/ - 1 = -//	
	(xiii)	A force $\vec{F} = 7\underline{i} + 4\underline{j} - 3\underline{k}$ is applied at P(1, -2, 3). Find its moment about the	
		point Q (2, 1, 1)	
		SECTION – II	
		Attempt any THREE questions.	
~	() D'	3x - 1 if x < 1	_
Э.	(a) Di	scuss the continuity of $f(x)$ at $x = 1$ $f(x) = \begin{cases} 3x - 1 & \text{if } x < 1 \\ 4 & \text{if } x = 1 \\ 4x & \text{if } x > 1 \end{cases}$	5
	(b) Sh	now that $2^{x+h} = 2^x \left\{ 1 + (\ln 2)h + \frac{(\ln 2)^2 h^2}{2!} + \frac{(\ln 2)^3 h^3}{3!} + \dots \right\}$	5
6.	(a) Ev	valuate $\int \sqrt{4-5x^2} dx$	5
		nd the equation of perpendicular bisector of segment joining the	
		ints $A(3,5)$ and $B(9,8)$	5
7.	(a) Ev	valuate the integral $\int_{0}^{4} \frac{\cos \theta + \sin \theta}{2 \cos^{2} \theta} d\theta$	5
		$\frac{\mathbf{J}}{0}$ $2\cos^2\theta$	
		aximize $f(x, y) = x + 3y$ subject to the constraints	_
		$x + 5y \le 30$; $5x + 4y \le 20$, $x \ge 0$, $y \ge 0$	5
8.		and the interior angles whose vertices are $A(-2, 11)$, $B(-6, -3)$, $C(4, -9)$	5
	100 100	and an equation of the circle passing through the points $A(4,5)$, $B(-4,-3)$, $(8,-3)$	5
0		ove angle in a semi circle is right angle.	5
7.	(a) FIG	ove angle in a senii enere is right angle.	9

(b) Find an equation of the tangent to the parabola $y^2 = -6x$ which is parallel to the

5

174-222-II-(Essay Type)-35000

line 2x + y + 1 = 0. Also find point of tangency.

						(To be filled in by the candidate)					
(Academic Sessions 2018 – 2020 to 2020 – 2022) MATHEMATICS 222-(INTER PART – II) Time Allowed: 30 Min								ved: 30 Minutes			
	Q.PAPER – II (Objective Type)			GROUP – II				Maximum Marks : 20			
NT.					PER COD			on Thoub	aiaa wi	aioh ru	ou think is somest
Note: Four possible answers A, B, C and D to each question are given. The choice which you think is corr fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or fill								Cutting or filling			
two or more circles will result in zero mark in that question. (URG) - 2)											
	1-1	If the degree of a polynomial function is 1, then it is called:									
		(A)	Identity function	1	(B) Lin	ear funct	ioi	n			
			Constant function	n	(D) Trig	gonometr	ic	function			
	2	lim	$\frac{x^2-1}{x^2-x}=:$			•					
		$x \rightarrow 1$	x^2-x								
		(A)	2	(B)	1	(C)	4		(D)	5
		()	1 1	: (-)	2		_				
	3	If y	$\frac{2}{y = \frac{1}{x^2}}$, then $\frac{dy}{dx}$	at $x =$	-1 is:						
							1	1		(D)	4
		(A)	2	(B)	3	(C	·)	$\frac{1}{3}$		(D)	4
	4	$\frac{d}{d}$	$\cot^{-1}x)=:$								
					_1			2			2
		(A)	$\frac{1}{1+x^2}$	(B)	$\frac{1}{1+x^2}$, (C	()	$-\cos ec^2$	x	(D)	$\sec^2 x$
İ	5	Two positive integer whose sum is 30 and their product will be maximum are:							num are:		
		(A)	14,16	(B)	15,15		(C	2) 10,20	0	(D) 12,18
	6	d	$\left[\frac{f(x)}{g(x)}\right] = :$								
		dx	g(x)								
		(A)	f(x)g'(x) - f'(x)	g(x)	(B)	f'(x)g(x)	:)-	-f(x)g'(x)	:)		
		(A)	$\frac{f(x)g'(x) - f'(x)}{[g(x)]^2}$		(D)	[.	f(x)	(r) ²			
			g(x) f'(x) - f(x)	g'(x)		g'(x) f(x)	:)-	-g(x) f(x))		
		(C)	$\frac{g(x) f'(x) - f(x)}{[g(x)]^2}$	8 (")	(D)		$\frac{1}{2}(x)$:)] ²	<u>_</u>		
Ì	7	[aa	cx dx = :				, (/ 1			
		J	cx ax = .								
		(A)	$\ell n(\sec x + \tan x)$	+ <i>c</i>	(B)	$ln(\cos ec)$	x +	$\cot x) + c$			
		(C)	$\ell n(\sin x + \cos x) +$	+ <i>c</i>	(D)	$\sec x + \tan x$	1 x	+ <i>c</i>			
ļ	8	The				$\frac{dy}{dy}$	c	•			
		The solution of differential equation $\frac{dy}{dx} = -y$ is :									
١		(A)	$y = x e^{-x}$	(B)	$y = c e^{-x}$	(C	()	$y=e^x$		(D)	$y = ce^x$
	9	3 ^	3 ,								
			$x^3dx=$:								
		- <u>l</u>				la.	~`	•		(T)	
		(A)	20	(B)	40	7 ((<u>C)</u>	30		(D)	60 (Trans Orans)

(2) LUR-92-23 $\sin 3x \, dx = :$ (A) $-\frac{\cos 3x}{3} + c$ (B) $\frac{\cos 3x}{3} + c$ (C) $3\cos 3x + c$ (D) $-3\cos 3x + c$ An equation of the horizontal line through the point P (7, -9) is: (A) y=-9 (B) y=9 (C) x=7 (D) x=-7The perpendicular distance of line 3x+4y+10=0 from the origin is: 12 (A) 0 (B) 1 (C) 2 Slope of line perpendicular to line 3x-4y+5=0 is : 13 (A) $\frac{-3}{4}$ (B) $\frac{-4}{3}$ (C) $\frac{3}{4}$ (D) $\frac{4}{3}$ Point of intersection of lines x-2y+1=0 and 2x-y+2=0 equals: 14 (A) (1,0) (B) (0,1) (C) (-1,0) (D) (0,-1) (0,0) is the solution of inequality: 15 (A) 7x+2y>3 (B) x-3y>0 (C) x+2y<6 (D) x-3y<0The condition for a line y=mx+c to be the tangent to the circle $x^2+y^2=a^2$ is : 16 (A) $c = \pm m\sqrt{(1+a^2)}$ (B) $c = \pm a\sqrt{1+m^2}$ (C) $c = \pm a\sqrt{1-m^2}$ (D) $c = \pm m\sqrt{1-a^2}$ In an ellipse, the foci lie on: 17 (B) Minor axis (A) Major axis (C) Directrix (D) Z-axis The radius of the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is : 18 (A) $\sqrt{g^2 + f^2 + c}$ (B) $\sqrt{g^2 - f^2 + c}$ (C) g + f - c (D) $\sqrt{g^2 + f^2 - c}$ 19 Length of the vector $2\hat{i} - \hat{j} + 2\hat{k}$ is: (A) 6 (B) 4 (C) 3 (D) Cosine of the angle between two non-zero vectors \underline{a} and \underline{b} is : 20 (B) $\frac{|\underline{a}||\underline{b}|}{\underline{a} \cdot \underline{b}}$ (C) $\frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$ (D) $\frac{\underline{a} \times \underline{b}}{|\underline{a}||\underline{b}|}$ (A) $\underline{a} \cdot \underline{b}$

174-222-II-(Objective Type)- 8750 (8192)

Roll No (To be filled in by the candidate) (Academic Sessions 2018 - 2020 to 2020 - 2022) **MATHEMATICS** 222-(INTER PART – II) Time Allowed: 2.30 hours PAPER – II (Essay Type) GROUP - I Maximum Marks: 80 SECTION - I 2. Write short answers to any EIGHT (8) questions : 16 (i) Express perimeter "P" of a square as a function of its area "A" (ii) Find $f^{-1}(x)$ for f(x) = -2x + 8(iii) Evaluate $\lim_{x\to 0} \frac{\sin x^{\circ}}{x}$ (iv) Define rational function with example. (v) Evaluate $\lim_{x \to \infty} \left(\frac{x}{1+x} \right)^x$ (vi) Find $\frac{dy}{dx}$ from first principle if $y = \sqrt{x+2}$ (vii) Differentiate w.r.t. "x"; $y = \frac{x^2 + 1}{x^2 - 3}$ (viii) Find $\frac{dy}{dx}$ if $xy + y^2 = 2$ (ix) Find derivative w.r.t. x if $y = \cot^{-1}\left(\frac{x}{a}\right)$ (x) Find $\frac{dy}{dx}$ if $y = \log_{10}(ax^2 + bx + c)$ (xi) Apply the Maclaurin Series to prove that $e^{2x} = 1 + 2x + \frac{4x^2}{12} + \frac{8x^3}{13} + ---$ (xii) Define increasing function with example. 3. Write short answers to any EIGHT (8) questions : 16 (i) Find δy and dy in $y = \sqrt{x}$, when x changes from 4 to 4.41 (ii) Evaluate the integral $\int \frac{(\sqrt{\theta}-1)^2}{\sqrt{\theta}} d\theta$, $\theta > 0$ (iii) Find $\int \frac{1}{x(\ln x)} dx$ (iv) Evaluate the integral $\int \frac{x+2}{\sqrt{x+3}} dx$ (v) Using by part method to evaluate $\int x^2 \ln x \, dx$ (vi) Evaluate the definite integral $\int_{0}^{\infty} \cos^{2}\theta \sin\theta \, d\theta$ (vii) Find the area between the x-axis and the curve $y = \cos \frac{1}{2}x$ from $x = -\pi$ to π (viii) Solve the differential equation $\sin y \cos ec x \frac{dy}{dx} = 1$

(ix) Find h such that A(-1, h), B(3, 2), C(7, 3) are collinear.

3.		(x)	Two points $P(-5, -3)$ and $O'(-2, -6)$ are given in XY-coordinate, find the coordinate of P in xy-coordinate system.	
	((xi)	Find equation of the line having x-intercept – 3 and y-intercept 4.	
	(:	xii)	Find the distance from the point P (6, -1) to the line $6x - 4y + 9 = 0$	
4.	Wı		hort answers to any NINE (9) questions :	18
		(i)	Define problem constraint.	10
		(ii)	Graph the solution set of the linear inequality $3y-4 \le 0$	
		(iii)	Find slope of tangent to $x^2 + y^2 = 5$ at $(4,3)$	
		(iv)	Find α if $\underline{u} = \alpha \underline{i} + 2\alpha \underline{j} - \underline{k}$ and $\underline{v} = \underline{i} + \alpha \underline{j} + 3\underline{k}$ are perpendicular to each other.	
		(v)	Find the direction cosine of the vector \overline{PQ} , where P(2, 1, 5) and Q(1, 3, 1)	
	((vi)	Find the vector from point A to origin where $\overline{AB} = 4i - 2j$ and B is the point $(-2, 5)$	
	•	vii) viii)	Find cosine of the angle between $\underline{u} = \begin{bmatrix} -3,5 \end{bmatrix}$ and $\underline{v} = \begin{bmatrix} 6,-2 \end{bmatrix}$ Write standard equation of the hyperbola.	
		(ix)	Find the centre of the ellipse $9x^2 + y^2 = 18$	
		(x) (xi)	Find the equation of the circle with centre $(5, -2)$ and radius is 4. Find the equation of the hyperbola with foci $(\pm 5, 0)$ and vertex $(3, 0)$	
	(:	xii)	Find centre and radius of the circle $4x^2 + 4y^2 - 8x + 12y - 25 = 0$	
	(:	xiii)	Find focus and vertex of the parabola $x^2 = 5y$	6
		141	SECTION - II	
No	te:	At	tempt any THREE questions.	
5.	(a)	Pro	we that $\lim_{x\to 0} \frac{a^x - 1}{x} = \log_e a$	5
	(b)	If :	$x = \frac{1 - t^2}{1 + t^2}$, $y = \frac{2t}{1 + t^2}$ prove that $y = \frac{dy}{dx} + x = 0$	5
6.	(a)	Eva	luate $\int \ell n(x + \sqrt{x^2 + 1}) dx$	5
	(b)	Prov	we that the linear equation $ax + by + c = 0$ in two variables x and y represents	
		a str	raight line.	5
7.	(a)	Find	If the area between the x-axis and the curve $y = \sqrt{2ax - x^2}$ when $a > 0$	5
	(b)	Graj poin	oh the solution region of the system of linear inequalities and find the corner its of $2x - 3y \le 6$, $2x + 3y \le 12$, $x \ge 0$	5
3.			a joint equation of the lines through the origin and perpendicular to the lines	5
			esented by $x^2 - 2xy \tan \alpha - y^2 = 0$	5
	(b)	Find	equations of the tangent lines to the circle $x^2 + y^2 + 4x + 2y = 0$ drawn from	
			-1,2)	5
٠.	(a)	Find	the centre, foci, eccentricity, vertices and equations of directrices of $\frac{y^2}{16} - \frac{x^2}{9} = 1$	5
			that $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$	5

173-222-I-(Essay Type)-28000