Student Name;		Roll No		Date//		
Class > 2 nd year		Subject: > Ma	thematics	➤ Chapter # 7		
T- Marks: 30	Tin	ne: 40 mints	Obtain Marks			

Q#:	Circle the correct option		1x7=	:7						
1	If $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ then $\overrightarrow{AB} =$									
a	\vec{a} - \vec{b}	$\mathbf{b} \vec{a} + \vec{b}$	c	\vec{b} - \vec{a}		d	$ec{a}\cdotec{b}$			
2	$ \cos\alpha\hat{\imath} + \sin\alpha\hat{\jmath} + 0k $									
a	0 b	-1	c		2	d	1			
3	Angle between the vectors $4i + 2j - k$ and $-i + j - 2k$ is									
a	30^{0}	b 45°	c		90^{0}	d	60^{0}			
4	If α , β , γ are the direction angle of a vector then $\cos^2\alpha + \cos^2\beta + \cos^2\gamma =$									
a	2	0	С	-1		d	1			
5	Non-zero vectors \overrightarrow{a} and \overrightarrow{b} are parallel if $\overrightarrow{a} \times \overrightarrow{b} = ;$									
a	0	b 1	С	-1		d	(a, b)			
6	The triple scalar product of vectors, calculates the volume of;									
a	Triangle	b Parallelogram	С	tetrahedron		d	d parallelepiped			
7	$\hat{i} \cdot (\hat{j} \times \hat{j}) = ;$									
a	1	b i		c 0)		d 2			
Q#2	Write short answer of following question. 2x7=14									
i	Find the unit vector in the direction of $\underline{V} = 2\underline{i} - 3\underline{j}$									
ii	Find a vector whose magnitude is 4 and is parallel to $2\underline{i} - 3\underline{j} + 6\underline{k}$									
iii	Compute $\underline{b} \times \underline{a}$ if $\underline{a} = 2\underline{i} + \underline{j} - \underline{k}$, $\underline{b} = \underline{i} - \underline{j} + \underline{k}$									
iv	Find the value of α so that the vector $\alpha \underline{i} + \underline{j}$, $\underline{i} + \underline{j} + 3\underline{k}$ and $2\underline{i} + \underline{j} - 2\underline{k}$ are coplaner;									
v	Find the value of α so that the vectors $\alpha i + j$, $i + j + 3k$, and $2i + j - 2k$ are coplanar;									
vi	If $\vec{v} = 3i - 2j + 2k$, and $\vec{w} = 5i - j + 3k$, then find $ 3\vec{v} + \vec{w} $									
vii	Find a vectors whose magnitude is 4 and is parallel to $2i-j$									
	0 # 3 Write detail answer of thes	a magtions	4+4	-0						

- Q#3 Write detail answer of these questions. 4+5=9

 a. If $\vec{a} + \vec{b} + \vec{c} = 0$, then prove that $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$
 - b. Given force $\vec{F} = 2i + j 3k$ acting at a point A (1,-2, 1) Find the moment of \vec{F} about the point B(2,0,2).